FRENIC 5000G11S-EN

Additional Instruction Manual

A part of functions are changed or added. Please refer to both the Instruction manual of inverter and this manual.

--- Inverter manual ---22kW or less : INR-SI47-0554 * -E 30kW or more : INR-HF52232 * -E

* : blank or "a" to "z"

This manual is applied for the following inverter ROM versions. Inverter of 22kW or less : S09000 or later 30kW or more : H09000 or later Check the ROM version in the maintenance information on the keypad panel. (Please refer to the "4-3-9 Maintenance information" in the instruction manual of inverter.)

The following functions are changed or added.

Function No.	NAME	Changed of added contents
F13	Electric thermal O/L relay (for braking-resistor)	"External braking resistor" of set value 2 means the resistor of type "DB***-2C/4C".
F14	Restart mode after momentary power failure(operation selection)	In case of set value 2 or 3, setting of U23, U24 becomes effective.
F25	Stop frequency	Setting range: changed from "0.1 to 6.0Hz" to "0.1 to 60.0Hz".
F41	Torque limit1 (braking)	U01 (Maximum compensation frequency during braking torque) becomes effective.
E17	Torque limit2 (braking)	In case of 0% selected (regeneration avoidance), U60 becomes effecitve.
E01 to E09	X1 to X9 terminal function	Setting range: changed from "0 to 32" to "0 to 35".
E20 to E24	Y1 to Y4, Y5A and Y5C terminal function	Setting range: changed from "0 to 34" to "0 to 37".
H07	ACC/DEC pattern (mode select)	"Sharp of S-shape" of set value 2 is changed to "variable of S-shape".
UXX	User functions	New addition

5. Function Select

5-1 Function select list

<u>F : F</u>	undamental Functions									
Func	NAME	LCD Display	Setting range	Unit	Min.	Factory	Setting	Change	User	Remark
No.					Unit	22kW	30kW	during op	Set Value	
F25	Stop frequency	F25 STOP Hz	0.1 to 60.0Hz	Hz	0.1	0.	2	NA		

E : Extension Terminal Functions

Func	NAME	LCD Display	Setting range	Unit	Min.	Factory	Setting	Change	User	Remark
No.					Unit	22kW	30kW	during op	Set Value	
E01	X1 terminal function	E01 X1 FUNC	0 to 35			0		NA		
E02	X2 terminal function	E02 X2 FUNC	I			1		NA		
E03	X3 terminal function	E03 X3 FUNC				2		NA		
E04	X4 terminal function	E04 X4 FUNC				3		NA		
E05	X5 terminal function	E05 X5 FUNC	Ī	-	-	4		NA		
E06	X6 terminal function	E06 X6 FUNC				5		NA		
E07	X7 terminal function	E07 X7 FUNC				6		NA		
E08	X8 terminal function	E08 X8 FUNC	Ī			7		NA		
E09	X9 terminal function	E09 X9 FUNC				8		NA		
E20	Y1 terminal function	E20 Y1 FUNC	0 to 37			0		NA		
E21	Y2 terminal function	E21 Y2 FUNC				1		NA		
E22	Y3 terminal function	E22 Y3 FUNC	I	-	-	2		NA		
E23	Y4 terminal function	E23 Y4 FUNC]			7		NA		
E24	Y5A and Y5C terminal func.	E24 Y5 FUNC	T			10)	NA		

U : User Functions

Func	NAME	LC	D Display	Setting range	Unit	Min.	Factory	Setting	Change	User	Remark
No.						Unit	22kW	30kW	during op	Set Value	
U01	Maximum compensation frequency	U01	USER 01	0 to 65535	-	1	7	5	A		
	during braking torque limit										
U02	1st S-shape level at acceleration	U02	USER 02	1 to 50%	%	1	1	0	NA		
U03	2nd S-shape level at acceleration	U03	USER 03	1 to 50%	%	1	1	0	NA		
U04	1st S-shape level at deceleration	U04	USER 04	1 to 50%	%	1	1	0	NA		
U05	2nd S-shape level at deceleration	U05	USER 05	1 to 50%	%	1	1	0	NA		
U08	Main DC link (Initial value)	U08	USER 08	0 to 65535	-	1	xx	хх	А		
U09	capacitor (Measured value)	U09	USER 09	0 to 65535	—	1	()	A		
U10	PC board capacitor powered on time	U10	USER 10	0 to 65535h	h	1	C)	А		
U11	Cooling fan operating time	U11	USER 11	0 to 65535h	h	1	0)	A		
U13	Magnetize current vibration	U13	USER 13	0 to 32767	-	1	819	410	A		
	damping gain										
U15	Slip compensation filter	U15	USER 15	0 to 32767	-	1	556	546	A		
	time constant										
U23	Integral gain of continuous	U23	USER 23	0 to 65535	-	1	1738	1000	A		
	operation at power failure										
U24	Proportional gain of continuous	U24	USER 24	0 to 65535	-	1	1024	1000	A		
	operation at power failure										
U48	Input phase loss protection	U48	USER 48	0, 1, 2	-	-	55kW	75kW	NA		
							0	1			
U49	RS485 protocol selection	U49	USER 49	0, 1	—	-)	NA		
U56	Speed agreement (Detection width)	U56	USER 56	0 to 50%	%	1	1	0	A		
U57	/PG error (Detection timer)	U57	USER 57	0.0 to 10.0s	s	0.1	0.	5	A		
U58	PG error selection	U58	USER 58	0, 1	—	-	1		NA		
U59	Braking-resistor function select	U59	USER 59	00 to A8(HEX)	_	1	0	0	NA		
U60	Regeneration avoidance	U60	USER 60	0, 1	-]	-	C)	NA		
	at deceleration										
U61	Voltage detect offset and	U61	USER 61	22kW : 0(Fixed.)	-]	-	C)	A		
	gain adjustment			30kW: 0, 1, 2							

Note: U-functions are displayed on the keypad panel of keypad panel ROM version "K08000" or later.

5-2 Function Explanation

F13 | Electronic thermal O/L relay (for braking-resistor)

Inverter capacity	Operation
G11S: 7.5kW or less	0 : Inactive 1 : Active (built-in braking-resistor) 2 : Active (DB***-2C/4C external braking-resistor)
G11S: 11kW or more	0 : Inactive

 In selection of setting value"2", please set up the type of a braking resistor, and a connection circuit by functional code:U59.

Please refer to U59 for details.

Related Functions U59

F25

Restart mode after momentary power failure(operation selection)

 In selection of setting value"2" or "3", both integration constant and the proportional constant during operation ride-though can be adjusted by the function code:U23 and U24.

Please refer to the function code:U23 and U24 for details.

Related Functions	ľ
U23	
U24	

Stop frequency

Set values: 0.1 to 60.0Hz

F 41	Torque limit1 (braking)
E17	Torque limit2(braking)

- The upper limit of increase frequency at the torque limit operation is set by the function code: U01.
- When the set value "0%(Regeneration avoidance)" is set, the operation mode is set by the function code:U60.

Please refer to the function code:U01 and U60 for details.

		Related Functions U01 U60
$\left(\right)$	E01	X1 Terminal function
		I
$\left(\right)$	E09	X9 Terminal function
	Set value	Function
	33	Line speed control Cancellation [Hz/LSC]
	34	Line speed frequency memory [LSC-HLD]
	35	Frequency setting 1/ Frequency setting 2
		[Hz1/Hz2]

Line speed control cancellation [Hz/LSC]

Line speed frequency memory [LSC-HLD]

These functions are effective for the option card (OPC-G11S-PG, -PG2, -PGA). Refer to each manual.

Frequency setting 1/ Frequency setting 2[Hz1/Hz2]

 This function switches the frequency setting method set in function codes F01 and C30 by an external digital input signal. It is reverse-logic of the set value "11" (frequency set 2/frequency set 1[Hz2/Hz1]).

Set value input signal 35	Frequency setting method selected
Off	C30 FREQ CMD2
On	F01 FREQ CMD1

note : This set value cannot be used with the set value "11" simultaneously. When the set value "11" and "35" are selected, the display becomes "Er6".

Set value	Function
30	Life expectancy detection signal [LIFE]
35	Speed agreement signal [DSAG]
36	PG error signal[PG-ABN]
37	Torque limiting (Signal with delay) [TL2]

Life expectancy detection signal [LIFE]

 When either of data for the Life expectancy judgment of the function code:U09 to U11 reaches at the Life expectancy judgment level, the ON signal is output. However, the inverter does not do alarm. Moreover, the alarm output for any fault (30A, 30b, 30C) does not operate.

Function code	Parts of Life expectancy judgment	Life expectancy judgment level
U09	Capacitor in main circuit	85% or less of the initial value
U10	Electrolytic capacitor on PC board	61,000 hours
U11	Cooling fan	25,000 hours

 In the following cases, normal life judgment of the capacitor in main circuit may not be able to be performed.

①When a power is turned off during inverter operation.

- ② When cooling fan ON/OFF control is operated. (function code : H 06= 1)
- 3 When the power is supplied by the auxiliary input terminals (R0,T0).
- ④ When the option card is operated .
- (5) When RS485 communication is operated .
- 6 When the power supply is turned off with digital input (FWD, REV, X1-X9) of a control terminal being ON.
- In the case of (3, 4, 5) and (6), life judgment is

enabled by adjusting the function both code:U08 and U09.

Related Functions U08~U11

Speed agreement signal [DSAG]

PG error signal [PG-ABN]

 These functions are effective for the option card (OPC-G11S-PG, -PG2, -PGA).
Refer to each manual.

Torque limiting(Signal with delay)[TL2]

The turning on signal is output by continuing the limiting action(Torque limit operation, regeneration avoidance operation and overcurrent limiting operation) of 20ms or more.

H07 ACC/DEC pattern (mode select)

 This function selects the acceleration and deceleration pattern.

Set value

- 0 : Inactive (linear acceleration and deceleration)
- 1 : S-shape acceleration and deceleration (mild)
- 2 : S-shape acceleration and deceleration (variable)
- 3 : Curvilinear acceleration and deceleration

Please refer to from U02 to U05 (set of the range of S-shape), when you select the set value "2".

Related Functions U02~U05 U function is displayed since K08000 or later of keypad ROM version.

U01 Maximum compensation frequency during braking torque limit

 This function becomes effective, when the torque limit (brake) is used. The inverter controls to increase the output frequency so that torque calculations do not exceed the torque limit (brake) setting (F41 or E17). (When F41 or E17 is set to 999, it becomes invalid.) This function sets the increment of upper limit for output frequency.
when the regeneration avoidance is selected, the resurrection ability can be improved by raising the increment of upper limit. However, the output frequency of the inverter is limited at the frequency limit(high):F15

U 0 1 U S E R 0 1

Setting range : 0 to 65535

The set value "15" becomes 1Hz. (The set value "1" becomes 1/15Hz)

U02	1st S-shape level at acceleration (start)
U03	2nd S-shape level at acceleration (stop)
U04	1st S-shape level at deceleration (start)
U05	2nd S-shape level at deceleration (stop)

 When "2" is set in the function code: H07, both curvilinear acceleration and deceleration ranges of S-shape can be set up arbitrarily. The range is the ratio for

maximum output frequency 1 (F03) or 2 (A01) .

U	0	2	U	S	E	R	0	2		
U	0	3	U	S	Ε	R	0	3		
U	0	4	U	S	Ε	R	0	4		\square
U	0	5	U	S	Ε	R	0	5		\square

Setting range : 1 to 50%

Output frequency

◆ 100% value of this function means maximum frequency (*fmax*).

Acceleration time "*tacc*" and deceleration time "*tdec*" of upper figure become longer than the linear acceleration time and deceleration time. When the set acceleration time(F07, E10, E12, E14) is assumed to be "*Ta*" and deceleration time(F08, E11, E13, E15) is assumed to be "*Td*", "*tacc*" and "*tdec*" can be calculated by the following expressions.

· At acceleration,

$$|f1 - f0| \ge f \max \times \frac{U02 + U03}{100}$$
 or,

At deceleration,

$$|f1 - f0| \ge f \max \times \frac{U04 + U05}{100}$$
$$tacc = (\frac{f1 - f0}{f \max} + \frac{U02 + U03}{100}) \times Ta$$
$$tdec = (\frac{f1 - f0}{f \max} + \frac{U04 + U05}{100}) \times Td$$

linear Acceleration and deceleration clause

S-shape clause

· At acceleration,

$$|f1 - f0| < f \max \times \frac{U02 + U03}{100}$$
 or,

At deceleration,

$$|f1 - f0| < f \max \times \frac{U04 + U05}{100}$$
$$tacc = 2 \times \left\{ \sqrt{\frac{f1 - f0}{f \max} \times \frac{100}{U02 + U03}} \right\} \times \left(\frac{U02 + U03}{100}\right) \times Ta$$
$$tdec = 2 \times \left\{ \sqrt{\frac{f1 - f0}{f \max} \times \frac{100}{U04 + U05}} \right\} \times \left(\frac{U04 + U05}{100}\right) \times Td$$

TTO 4 . TTO

U08	Initial value of main DC link capacitor	
U09	Measured value of main DC link capacitor	
	for the life expectancy judgment of the concei	4.

Data for the life expectancy judgment of the capacitor in main circuit is stored in this function. The electrical discharge time of the capacitor can be measured automatically, and the time of part replacement can be confirmed according to the decrement rate from the factory shipment.

U	0	8	U	S	Ε	R	0	8		
U	0	9	U	S	Ε	R	0	9		

Setting range : 0 to 65535

- The electrical discharge time which is measured in the factory shipment is set to function code U08 as a initial value. This value is different in each inverter.
- The electrical discharge time of the capacitor is measured automatically, when the power supply is turned off. And, the result is stored in function code U09.

when the power supply is turned off under the conditions as follows, decrement rate (%) to the factory shipment can be measured.

<u>Conditions</u>: which has been described to "*Estimation of life expectancy based on maintenance information" of the instruction manual "8-2 periodical inspection".

The result of $\frac{U09}{U08} \times 100$ is displayed in CAP=xxx.x%

of maintenance information. 85% becomes a standard at the part replacement time.

When you make measurement of capacity and life expectancy judgment of capacitor with an actual operating condition, set the value "30" to the function code "E20 to E24". And write the measurement result U09 with an actual operating condition to the function code U08 as an initial value as early as possible since inverter operation starts.

However, life judgment by the measurement result cannot be performed in case of ① and ②.

- ① During inverter operation, a power supply is turned off and it stops.
- ② Cooling fan ON/OFF control is used. (function code : H 06= 1)

Turn off the power supply of inverter, on the conditions at which the inverter has stopped, and a cooling fan is operated. It is not necessary to remove an option card and the connection with a control terminal.

As for this "measurement with an actual operating condition", carry out this measurement about 10 times to minimize the error of a measurement result, and make the average value into an initial value.

Moreover, when there is 10% or more of change from the last measured value, measurement is disregarded in order to prevent incorrect measurement. Renewal of a display is not carried out.

 Set measured value U09 to the initial value U08 after exchanging capacitors.

U10

PC board capacitor powered on time

◆ The accumulation time of the capacitor on PC board are displayed. the accumulation time of the control power supply multiplied by the life expectancy coefficient defined by the temperature inside the inverter are displayed. Hence, the hours displayed may not agree with the actual operating hours. Since the accumulation time are counted by unit hours, power input for less than one hour will be disregarded. The accumulation time are displayed in TCAP=xxxxxh of maintenance information. The standard at the replacement time is 61,000h. Refer to the manual "8-2 regular check" for the check.

U 1 0 U S E R 1 0	
-------------------	--

Setting range: 0 to 65535 hours

 Clear the accumulation time to 0 hour, after replacing the PC board on which capacitors are equipped with. There is also PC Board without the capacitor (ex :Control circuit board) not to be cleared the accumulation time. For details, contact Fuji Electric.

U11

11 Cooling fan operating time The integrated operating hours of the cooling fan are displayed. Since the integrated hours are counted by

unit hours, power input for less than one hour will be disregarded. The integrated hours are displayed in TFAN=xxxxxh of maintenance information.

The standard at the replacement time is 40,000h in the inverter of 3.7kW or less. The standard at the replacement time is 25,000h in the inverter of 5.5kW or more.(Estimated life expectancy of a cooling-fan at inverter ambient temperature of 40° C)

The displayed value should be considered as a rough estimate because the actual life of a cooling fan is influenced significantly by the temperature. Refer to the manual "8-2 regular check" for the check.

	U 1	1	US	ER	1	1			
--	-----	---	----	----	---	---	--	--	--

Setting range : 0 to 65535 hours

 Clear integrated operating time to 0 hour after replacing the cooling fan.

Related Functions
E20 to E24
(Set value: 30)

U13 Magnetize current vibration damping gain

 Adjust if Magnetize current vibration was occurred in the inverter output current.

	U	1	3	U	S	Ε	R		1	3			
--	---	---	---	---	---	---	---	--	---	---	--	--	--

Setting range: 0 to 65535

♦ Adjust the value from 0 to 2048 as a standard value. Vibration damping gain becomes 100% in set value 4096.

U15)(S	lip	cor	npe	ensa	atio	n fi	lter	tin	ne c	ons	stant
♦ The	e fil	ter	time	e co	nst	ant	of S	Slip	con	npe	nsa	tion	is set.
U	1	5	U	S	Ε	R		1	5				
Setting	g ra	ang	e:() to	327	767							

Calculate the filter time constant using the following formula.

Filter time constant = $\frac{2^{16}}{"U15"}$ [ms]

- The response time of the control slows because the filter time constant is enlarged when a value is set to smaller. However, system becomes steady.
- The response time of the control quickens because the filter time constant becomes smaller, when a set value is enlarged.
- Note : Response time quickens when a set value is enlarged. Therefore, there is a possibility that the output frequency becomes unstable. Please adjust a set value to smaller than factory setting value.

U23	Integral gain of continuous operation at power failure	
U24	Proportional gain of continuous operation at power failure	
♦ This F14 value	function becomes effective, when function coc (Restart mode after momentary power failure) s e is 2 or 3.	de et
U 2	2 3 U S E R 2 3	

U	2	4	U	S	Ε	R	2	4		[
Settin	g ra	ange	e : ()~(655	35				

octaing range . 0 00000

In case of F14 set value : 2. When the operation continuation level (H15) is reached, deceleration to a stop occurs. The DC voltage of the main circuit sharpens the deceleration slope, and the inverter collects the inertia energy of the load to maintain the DC bus voltage and controls the motor until it stops, so that the undervoltage protective function is not activated.

The deceleration slope is adjusted with U23 and U24. However, the deceleration operation time never becomes longer than the set deceleration time.

♦ In case of F14 set value : 3.

The output frequency is lowered by the control by which the DC voltage of the main circuit is kept constant from the regeneration energy, so that the inverter may continue operation when momentary power failure occurs.

The response is adjusted with U23 and U24 at this time.

Calculate the integral gain using the following formula.

DC voltage of the main circuit

U48 Input phase loss protection

This function selects operation of input phase loss or power supply unbalance protection.

	U	4	8	U	S	Ε	R	4	8		
1											

Setting range : 0 to 2

Set value	Operation
0	Active (without reactor (ACR/DCR))
1	Active (with reactor (ACR/DCR))
2	Inactive

operation of the inverter to input phase loss or power supply voltage unbalance does not work. If you use it as it is, there is a possibility of damaging an inverter. Failure may result.

U49		RS485 protocol selection											
The p	oroto	ocol	of	RS4	185	cor	nmı	unic	atic	on is	cha	anged.	-
U 4	9	U	S	Ε	R		4	9					
Setting ra	ang	Setting range : 0, 1											

Set value	Operation
0	FGI-bus
1	Modbus-RTU

Instruction manual and specifications are prepared about communicative details. Contact Fuji Electric.

U56	S	Speed agreement /PG error(Detection width)											
U57	S	pee	d ag	jree	mer	nt /P	Ge	rror	(De	etecti	on	timer)
U58				PG	i e	rro	r s	ele	ct	ion			
Thes	e fu	Inct	ions	s a	re	effe	ctiv	/e	for	the	op	otion	card
(OPC-G11S-PG, -PG2, -PGA).													
Refe	er to	eac	h m	anı	ıal.								
U 5	6	U	S	E	R		5	6					
U 5	7	U	S	E	R		5	7					
	8		S	F	R		5	8					
							U						_
U59		В	rak	ing	- re	esis	tor	fun	cti	on s	ele	ct	
♦ Whe	n fur	ctio	n c	ode	F1	3 (e	lec	tron	ic t	herm	nal)i	is set	t to 2,

both the type of the braking resistor and connection circuit are set. Factory setting is set to nominal applied resistor and the number of resistor is one. When the power load capacities of resistor are increased, set the factory setting properly

U	5	9	U	S	Ε	R		5	9		
						/	->/>				

Setting range : 0 to A8 (HEX)

Setting of ten's digit (type selection)

Set	Type braking	Resistance	Capacity	Duty cycle
value	resistor	[22]	[VV]	[%ED]
0	Standard applied resistor	-	-	10%
1	DB0.75-2C	100	200	
2	DB2.2-2C	40	400	
3	DB3.7-2C	33	400	
4	DB5.5-2C	20	800	
5	DB7.5-2C	15	900	
6	DB0.75-4C	200	200	
7	DB2.2-4C	160	400	
8	DB3.7-4C	130	400	
9	DB5.5-4C	80	800	
A	DB7.5-4C	60	900	

е	E	Braking-resistor	*1)	Sunthatic	Power
ť			Duty	resistance	consumption per
ഗ	Use	o	cycle		resistance
	number	Connection circuit	[%ED]	[32]	[comparatively]
0	1	₽∽₩₩₽°₽₿	10%	R	100%
1	2	₽∽₩₩₩₩₽₽₽₩	20%	2R	50%
2	2	роОВ	20%	(1/2)R	50%
3	4		40%	R	25%
4	3	₽∽₩₩•₩₩₽₽₽₽	30%	3R	33%
5	6	PO	50%	(3/2)R	17%
6	9	PO	50%	R	11%
7	4	₽┙╢╢╸╢┉	40%	4R	25%
8	8	PO	50%	2R	12.5%

Setting of unit's digit (connection circuit selection)

1) It is limited by the %ED value of the braking transistor inside the inverter.

- ♦ Set the function code both "F13" and "U59" before operating the inverter, and don't change the functions during operation. The integrated thermal data are cleared immediately, when function code "F13" or "U59" are changed. The overheat protection of resistor becomes invalid. When the function code "F13" or "U59" are changed in the state where temperature rose, the overheat protection of resistor becomes invalid, too.
- As there is a possibility of damaging the inverter, the resistor value less than standard applied value should not be available.
- Make into one kind the resistor used as combination conditions for a braking resistor, and connect it so that the electric power is consumed equally in each resistor.
- When the resistor which is instead of DB***-2C/4C are used as External braking resistor, function code F13 should be set to "0".
- When resistor values less than Standard applied resistor value is set to the function code, regeneration operation is invalid. OU alarm will be occurred.
- If connection of resistor and setting value of resistor is not corresponded, there is a possibility of damaging the resistor and the inverter.

Failure may result.

U60 Regeneration avoidance at deceleration

This function is available, when torque limit (brake) of F41(or E17) is set to "0%".

Setting range: 0, 1

Set value	Operation
0	Torque limit operation (for high response use)
1	OU alarm avoidance operation (foronly deceleration or Large inertia use)

- ♦ If function code U60 is set to "0", braking torque is kept to about "0%" under acceleration, deceleration, constant speed state. Output frequency is controlled in correspond to the rapid change in motor load to prevent OU alarm. Deceleration time becomes longer than the set deceleration time (F08).
- ♦ In case of setting value U60:1, Compared with setting value "0", it controls not to perform torque limit operation only at the deceleration time, but to prevent the rise of the DC voltage of the main circuit, and avoid OU alarm.

At this time, although deceleration time becomes longer than a setting value of F08, it becomes shorter than setting value"0" of U60. It may occur OU alarm, if load changes rapidly during deceleration.

U61	Voltage detect offset and gain adjustment

 30kW or more It adjusts, only when a print board is replaced by maintenance, etc. If not necessary, do not use this function.

	U	6	1	U	S	Ε	R		6	1			
--	---	---	---	---	---	---	---	--	---	---	--	--	--

Setting	range	:	0,	1,	2
---------	-------	---	----	----	---

Inverter capacity	Operation
22kW or less	0 : Inactive(fixed)
30kW or more	0 : Inactive
	1 : Voltage detect offset adjustment
	2 : Voltage detect gain adjustment

 Set the function code in the following procedure. If the inverter are operated without this adjustment after replacing the PC board, normal operation may not be able to be performed.

(Offset adjustment)

- 1) Confirm that the main power supply is turned ON, the motor wiring are connected and the motor has stopped (inverter operation command is OFF).
- 2) When the data of U61 is changed to "1", and the FUNC/DATA key is ON, the offset self adjustment is started. The display of "storing" of the keypad panel disappears several seconds later. When the set value returns to "0", adjustment is completed. If the main power supply is turned OFF, while outputting alarm, motor is driving, coast-to-stop command(BX) is ON and this adjustment is started, the inverter becomes "Er7:TUNING ERROR". In this case, start the adjustment after removing the above-mentioned factor.

(Gain adjustment)

- Drive the motor in an arbitrary frequency of about 10 to 60Hz(However, constant speed) after executing the above-mentioned offset adjustment.(U61:1) At this time, gain adjustment is available unrelated to the load state.
- 2) When the data of U61 is changed to "2", and the FUNC/DATA key is ON, the gain self adjustment is started. The display of "storing" of the keypad panel disappears several seconds to 30 seconds later. When the set value returns to "0", adjustment is completed.

If inverter is not operated, this adjustment is not available.

This is European customer only (Inverter is for professional use) The harmonics restriction in European Union (EU)

1.Combinations of the inverter with DC-reactor in table 1 fulfill the harmonics requirements of the EN 61000-3-2(+A14), which are European EN standard.

But these inverters without DC-reactor don't fulfill them. If they shall be connected to the public low voltage power supply system, the supply authority must be asked for permission to connect. Fuji Electric can provide this data sheets when you need the data for harmonics currents.

Table 1	Inverter model name	Applied DC-	reacto	r model name	Power supply
	FRN0.4G11S-4EN	DCR4-0.4	or	DCRE4-0.4	Three-phase
	FRN0.75G11S-4EN	DCR4-0.75	or	DCRE4-0.75	400V

Erratum

There is error in this instruction manual. Please refer to below erratum.

1.Page:11-1 <u>Error</u>

<u>Error</u> EMC product standard	EN61800-3/1997		
Immunity Emission	: Second environment : First environment : Second environment	(Industrial environment) (Domestic environment) (Industrial environment)	;22kW or less ;30kW or more
	Ļ		

Correct EMC product standard	EN61800-3/1997 +A11	/2000
Immunity	: Second environment	(Industrial environment)
Emission	: First environment	(Domestic environment)

Distribution class of Emission

Unrestricted distribution	Restricted distribution	
Without OPC-G11S-***	Without OPC-G11S-***	
FRN15G11S-4EN or less.	FRN18.5G11S-4EN or more.	
	With OPC-G11S-***	
	FRN-G11S-4EN all models with OPC-G11S-***.	
	Card option :OPC-G11S-AIO, DIO, PG, PGA, PG2, SY, RY, PGDIO,	
	PGRY, TL	
	Bus option :OPC-G11S-PDP, DEV, MBP, IBS, COP	
	WARNING	
	This is a product of the restricted sales distribution class according to	
	IEC61800-3.	
	In a domestic environment this product may cause radio interference in	
	which case the user may be required to take adequate measures.	