2MBI550VN-170-50

IGBT MODULE (V series)
1700V / 550A / 2 in one package

Features
- High speed switching
- Voltage drive
- Low Inductance module structure

Applications
- Inverter for Motor Drive
- AC and DC Servo Drive Amplifier
- Uninterruptible Power Supply
- Industrial machines, such as Welding machines

Maximum Ratings and Characteristics

Absolute Maximum Ratings (at Tj=25°C unless otherwise specified)

<table>
<thead>
<tr>
<th>Items</th>
<th>Symbols</th>
<th>Conditions</th>
<th>Maximum ratings</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Collector-Emitter voltage</td>
<td>Vces</td>
<td></td>
<td>1700</td>
<td>V</td>
</tr>
<tr>
<td>Gate-Emitter voltage</td>
<td>Vges</td>
<td></td>
<td>220</td>
<td>V</td>
</tr>
<tr>
<td>Collector current</td>
<td>Ic</td>
<td>Continuous</td>
<td>Tj=25°C</td>
<td>750</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Tj=100°C</td>
<td>550</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1ms</td>
<td></td>
<td>1100</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1ms</td>
<td></td>
<td>550</td>
</tr>
<tr>
<td>Collector power dissipation</td>
<td>Pp</td>
<td></td>
<td>175</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 device</td>
<td></td>
<td>3750</td>
</tr>
<tr>
<td>Junction temperature</td>
<td>TJ</td>
<td>1 device</td>
<td></td>
<td>150</td>
</tr>
<tr>
<td>Storage temperature</td>
<td>Tstg</td>
<td></td>
<td>-40 to 125</td>
<td></td>
</tr>
<tr>
<td>Isolation voltage between terminal and copper base (*1)</td>
<td>Viso</td>
<td>AC: 1 min.</td>
<td>3400</td>
<td></td>
</tr>
<tr>
<td></td>
<td>between thermistor and others (*2)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Screw torque Mounting (*3)</td>
<td></td>
<td></td>
<td>3.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Terminals (*4)</td>
<td></td>
<td>4.5</td>
<td></td>
</tr>
</tbody>
</table>

Note *1: All terminals should be connected together during the test.
Note *2: Two thermistor terminals should be connected together, other terminals should be connected together and shorted to base plate during the test.
Note *3: Recommendable Value : 2.5-3.5 Nm. (M5)
Note *4: Recommendable Value : 3.5-4.5 Nm (M6)

Electrical characteristics (at Tj= 25°C unless otherwise specified)

<table>
<thead>
<tr>
<th>Items</th>
<th>Symbols</th>
<th>Conditions</th>
<th>Characteristics</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zero gate voltage collector current</td>
<td>Ices</td>
<td>Vce = 0V, Vce = 1700V</td>
<td></td>
<td>mA</td>
</tr>
<tr>
<td>Gate-Emitter leakage current</td>
<td>Iges</td>
<td>Vce = 0V, Vce = 220V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Internal gate resistance</td>
<td>R ges</td>
<td></td>
<td></td>
<td>Ω</td>
</tr>
<tr>
<td>Input capacitance</td>
<td>Ciss</td>
<td>Vce = 10V, Vce = 0V, f = 1MHz</td>
<td></td>
<td>nF</td>
</tr>
<tr>
<td>Turn-on time</td>
<td>tσ</td>
<td></td>
<td></td>
<td>nsec</td>
</tr>
<tr>
<td>Turn-off time</td>
<td>tα</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Forward on voltage</td>
<td>Vf (terminal)</td>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td></td>
<td>(chip)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reverse recovery time</td>
<td>trr</td>
<td></td>
<td></td>
<td>nsec</td>
</tr>
<tr>
<td>Resistance</td>
<td>R</td>
<td>T = 25°C</td>
<td></td>
<td>Ω</td>
</tr>
<tr>
<td></td>
<td></td>
<td>T = 100°C</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>B</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>T = 25-50°C</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Thermal resistance characteristics

<table>
<thead>
<tr>
<th>Items</th>
<th>Symbols</th>
<th>Conditions</th>
<th>Characteristics</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thermal resistance (1 device)</td>
<td>Rθjc</td>
<td>Inverter IGBT</td>
<td></td>
<td>°C/W</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Inverter FW</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Contact thermal resistance (1 device) (*5)</td>
<td>Rθjc-w</td>
<td>with Thermal Compound</td>
<td></td>
<td>°C/W</td>
</tr>
</tbody>
</table>

Note *5: This is the value which is defined mounting on the additional cooling fin with thermal compound.
Characteristics (Representative)

- **Collector current vs. Collector-Emitter voltage (typ.)**
 - $T = 25°C / \text{chip}$
 - $V_{ce} = 20V, 15V, 12V, 10V, 8V$

- **Collector current vs. Collector-Emitter voltage (typ.)**
 - $T = 150°C / \text{chip}$
 - $V_{ce} = 20V, 15V, 12V, 10V, 8V$

- **Collector current vs. Collector-Emitter voltage (typ.)**
 - $V_{ce} = 15V / \text{chip}$
 - $T = 25°C, 125°C, 150°C$

- **Collector-Emitter voltage vs. Gate-Emitter voltage (typ.)**
 - $T = 25°C / \text{chip}$
 - $V_{ce} = 0V, 15V$

- **Gate Capacitance vs. Collector-Emitter Voltage (typ.)**
 - $V_{ce} = 0V, f = 1MHz, T = 25°C$
 - $C_{ies}, C_{oes}, C_{res}$

- **Dynamic Gate Charge (typ.)**
 - $V_{ce} = 900V, I_c = 550A, T = 25°C$
 - $V_{ce} = 15V, 0V, -15V$
 - Gate charge: $Q_g [\mu\text{C}]$
Switching time vs. Collector current (typ.)
$V_{CC}=900V, V_{GE}=\pm15V, R_G=3.3\Omega, T_J=25^\circ C$

Collector current: I_C [A]

Switching time vs. Gate resistance (typ.)
$V_{CC}=900V, I_C=550A, V_{GE}=\pm15V, T_J=125^\circ C, 150^\circ C$

Gate resistance: R_G [Ω]

Switching loss vs. Collector current (typ.)
$V_{CC}=900V, V_{GE}=\pm15V, R_G=3.3\Omega, T_J=125^\circ C, 150^\circ C$

Collector current: I_C [A]

Reverse bias safe operating area (max.)
$+V_{CE}=15V, -V_{CE}=15V, R_G=3.3\Omega, T_J=150^\circ C$

Gate resistance: R_G [Ω]

Collector-Emitter voltage: V_{CE} [V]

Notice)
Switching characteristics of V_{CE} is defined between Sense C and Sense E1 for Upper arm and Sense E1 and Sense E2 for Lower arm.
IGBT Modules

Switching characteristics of \(V_{CE} \) is defined between Sense C and Sense E1 for Upper arm and Sense E1 and Sense E2 for Lower arm.

<table>
<thead>
<tr>
<th>T(j) [sec]</th>
<th>0.0023</th>
<th>0.0201</th>
<th>0.0598</th>
<th>0.0708</th>
</tr>
</thead>
<tbody>
<tr>
<td>RH</td>
<td>IGBT</td>
<td>0.00429</td>
<td>0.01088</td>
<td>0.01537</td>
</tr>
<tr>
<td>[°C/W]</td>
<td>FWD</td>
<td>0.00644</td>
<td>0.01632</td>
<td>0.02305</td>
</tr>
</tbody>
</table>

Forward Current vs. Forward Voltage (typ.)

Reverse Recovery Characteristics (typ.)

Forward on voltage: \(V_i \) [V]

Forward current: \(I_i \) [A]

Reverse recovery current: \(I_{rr} \) [A]

Reverse recovery time: \(t_{rr} \) [nsec]

Pulse Width : \(P_w \) [sec]

Temperature characteristic (typ.)

FWD safe operating area (max.)

Notice) Switching characteristics of \(V_{CE} \) is defined between Sense C and Sense E1 for Upper arm and Sense E1 and Sense E2 for Lower arm.
■ Outline Drawings, mm

[Diagram of outline drawings with measurements and labels]

Weight: 300g (typ.)

■ Equivalent Circuit Schematic

[Diagram of equivalent circuit with labels]

[Inverter] [Thermistor]

P (2) C

G1 E1

G2 E2

N (1)

out (3, 4)

T1 T2
1. This Catalog contains the product specifications, characteristics, data, materials, and structures as of May 2011. The contents are subject to change without notice for specification changes or other reasons. When using a product listed in this Catalog, be sure to obtain the latest specifications.

2. All applications described in this Catalog exemplify the use of Fuji's products for your reference only. No right or license, either express or implied, under any patent, copyright, trade secret or other intellectual property right owned by Fuji Electric Co., Ltd. is (or shall be deemed) granted. Fuji Electric Co., Ltd. makes no representation or warranty, whether express or implied, relating to the infringement or alleged infringement of other's intellectual property rights which may arise from the use of the applications described herein.

3. Although Fuji Electric Co., Ltd. is enhancing product quality and reliability, a small percentage of semiconductor products may become faulty. When using Fuji Electric semiconductor products in your equipment, you are requested to take adequate safety measures to prevent the equipment from causing a physical injury, fire, or other problem if any of the products become faulty. It is recommended to make your design failsafe, flame retardant, and free of malfunction.

4. The products introduced in this Catalog are intended for use in the following electronic and electrical equipment which has normal reliability requirements.
 - Computers
 - Machine tools
 - OA equipment
 - Audiovisual equipment
 - Communications equipment (terminal devices)
 - Electrical home appliances
 - Personal equipment
 - Measurement equipment
 - Industrial robots etc.

5. If you need to use a product in this Catalog for equipment requiring higher reliability than normal, such as for the equipment listed below, it is imperative to contact Fuji Electric Co., Ltd. to obtain prior approval. When using these products for such equipment, take adequate measures such as a backup system to prevent the equipment from malfunctioning even if a Fuji's product incorporated in the equipment becomes faulty.
 - Transportation equipment (mounted on cars and ships)
 - Traffic-signal control equipment
 - Emergency equipment for responding to disasters and anti-burglary devices
 - Medical equipment
 - Trunk communications equipment
 - Gas leakage detectors with an auto-shut-off feature
 - Safety devices

6. Do not use products in this Catalog for the equipment requiring strict reliability such as the following and equivalents to strategic equipment (without limitation).
 - Space equipment
 - Submarine repeater equipment
 - Aeronautic equipment
 - Nuclear control equipment

7. Copyright ©1996-2011 by Fuji Electric Co., Ltd. All rights reserved. No part of this Catalog may be reproduced in any form or by any means without the express permission of Fuji Electric Co., Ltd.

8. If you have any question about any portion in this Catalog, ask Fuji Electric Co., Ltd. or its sales agents before using the product. Neither Fuji Electric Co., Ltd. nor its agents shall be liable for any injury caused by any use of the products not in accordance with instructions set forth herein.